Multiple-Criteria Approach to Optimisation of Multidimensional Data Models

نویسندگان

  • Igor Korelic
  • Violeta Mirchevska
  • Vladislav Rajkovic
  • Mirjana Kljajic Borstnar
  • Matjaz Gams
چکیده

This paper presents a novel approach to the adaptation ofmultidimensional data models to user-specific needs. The multidimensional data models used in contemporary business-intelligence systems are inherently complex. In order to reduce the complexity of these models, we propose using a qualitative multiple-criteria decision modelling method that is based on using a hierarchical tree of the criteria to decompose the larger problem into a group of smaller problems. The final value is derived by aggregating the criteria values using simple “if-then” rules, which form the knowledge-based expert rules in the hierarchical criteria tree that reflect users’ preferences. The multiple-criteria analysis of the multidimensional model structure results in a multidimensional model that exhibits a reduced complexity and is adapted to users’ needs. The model was validated using sales data from a medium-size enterprise. The qualitative (through questionnaires) and the quantitative (through usage mining) evaluation of the proposed methodology both showed that the proposed approach increases the ease-of-use of business intelligence systems and also contributes to a higher user satisfaction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emergency department resource optimisation for improved performance: a review

Emergency departments (EDs) have been becoming increasingly congested due to the combined impacts of growing demand, access block and increased clinical capability of the EDs. This congestion has known to have adverse impacts on the performance of the healthcare services. Attempts to overcome with this challenge have focussed largely on the demand management and the application of system wide p...

متن کامل

An extended of multiple criteria data envelopment analysis models for ratio data

One of the problems of the data envelopment analysis traditional models in the multiple form that is the weights corresponding to certain inputs and outputs are considered zero in the calculation of efficiency and this means that not all input and output components are utilized for the evaluation of efficiency, as some are ignored. The above issue causes the efficiency score of the under evalua...

متن کامل

Evaluation of recommender systems: A multi-criteria decision making approach

The evaluation and selection of recommender systems is a difficult decision making process. This difficulty is partially due to the large diversity of published evaluation criteria in addition to lack of standardized methods of evaluation. As such, a systematic methodology is needed that explicitly considers multiple, possibly conflicting metrics and assists decision makers to evaluate and find...

متن کامل

Accuracy evaluation of different statistical and geostatistical censored data imputation approaches (Case study: Sari Gunay gold deposit)

Most of the geochemical datasets include missing data with different portions and this may cause a significant problem in geostatistical modeling or multivariate analysis of the data. Therefore, it is common to impute the missing data in most of geochemical studies. In this study, three approaches called half detection (HD), multiple imputation (MI), and the cosimulation based on Markov model 2...

متن کامل

Efficiency evaluation of wheat farming: a network data envelopment analysis approach

Traditional data envelopment analysis (DEA) models deal with measurement of relative efficiency of decision making units (DMUs) in which multiple-inputs consumed to produce multiple-outputs. One of the drawbacks of these models is neglecting internal processes of each system, which may have intermediate products and/or independent inputs and/or outputs. In this paper some methods which are usab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Informatica, Lith. Acad. Sci.

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2015